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A PROCEDURE FOR COMPUTING

THE MOTION OF A LUNAR-LANDING VEHICLE

DURING THE LANDING IMPACT

By William C. Walton, Jr., and Barbara J. Durling

Langley Research Center

SUMMARY

This paper is a description of a procedure for computing the general motions

during impact of a vehicle performing a controlled soft landing on the moon. The

assumptions involved in idealization of the vehicle and landing surface are stated. The

equations of motion of the idealized system are derived. A procedure is set forth for

numerical integration of the equations. Detailed and explicit instructions are given for

coding a digital computer to carry out the computation of an impact history.

The procedure takes into account experience obtained from extensive correlations

of computed landing motions with results of tests of a model incorporating many of the

mechanical actions of a realistic vehicle. These correlations are reported in refer-

ence 1 (NASA TN D-4215).

The vehicle is idealized as an arbitrary rigid body with up to four legs arbitrarily

attached. A leg is composed of three struts in an inverted tripod arrangement. The

struts telescope during impact. Telescoping of a strut is resisted by forces which

represent the effects of an aluminum honeycomb shock absorber mounted in the strut

and the effects of overall system elasticity and damping. Representation of a very gen-

eral landing surface is allowed.

INTRODUCTION

American designers' conceptions of spacecraft capable of controlled, soft landings

on the moon have been characterized by a preference for vehicles with legs. Prominent

examples are the Surveyor vehicle (with three legs) for unmanned landing and the Apollo

lunar module (with four legs) for manned landing. The legs must be designed to prevent

damage to the craft during the landing impact and to bring it to rest in an upright atti-

tude so that no part of its mission such as deployment of instruments or relaunch will be

inhibited. Leg designs have very generally been trusses terminating on the lower end

in foot pad structures. Load-limiting shock absorbers are built into the trusses.



Evaluation of the design of sucha leg system is a considerabletask. The main
reasonsare as follows:

(1) Limitations onpresent methodsof maneuveringvehicles during the approach
to landing make it necessary to consider a wide rangeof attitudes andvelocities of the
vehicle at the momentof impact

(2) Becauseof uncertainty regarding the nature of landing sites on the moon, it is
necessary to consider very general conditions of topographyandcomposition of the
landing surface

(3) The relation betweenthe initial conditions andthe outcomeof an impact gen-
erally is extremely complicated

(4) Impact testing of structurally realistic full-scale vehicles in the earth's gravi-
tational field is seriously hamperedby problems which arise in simulating lunar gravity

(5) Becauseof fabrication difficulties, it doesnot appear to be feasible to construct
models structurally scaled so that the elastic behavior of the model whenimpacting
under earth's gravity simulates that of a realistic full-scale vehicle impacting under
lunar gravity.

Facedwith thesedifficulties andyet required to make judgementsregarding the
merit of different leg designs, a number of organizations (refs. 2 to 7) have settled on
the following procedure:

Equationsof motion of an impacting vehicle basedon simplifying idealizations of
the structure andthe landing surface are derived. A digital computer program is
devised for generating numerical solutions of the equations. A dynamic model suitable
for landing tests onearth is constructed, as many features of a realistic vehicle as is
feasible being scaled. Landing tests are conductedto determine the behavior of the
model during impacts under earth's gravity. Impact motion histories are calculated for
the model and are comparedwith the results of the tests. On the basis of the correla-
tion, the analysis is refined; andwhenconsistent successis achievedin predicting the
behavior of the model, the analysis is usedto assess the performance of realistic full-
scale vehicles impacting under lunar conditions.

Heavyreliance is currently placeduponsuchprocedures in making designdeci-
sions affecting mannedcraft.

The purposeof this paper is to describe in somedetail ananalytical procedure
developedat the Langley ResearchCenter along the lines which havebeendescribed.
The modelwhich wasused, the testing method,and correlations betweenthe analysis
and experiment are discussed in reference 1. It is felt that the present paper and ref-
erence 1 together will be useful as an aid to ascertaining the current state of the art in



analytical prediction of the performance of leg systems, in attaining computingcapability
ona level with the state of the art, andin planning research to improve the state of the
art.
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SYMBOLS

space-fixed Cartesian axes

body-fixed Cartesian axes

gravitational constant

Eulerian angles

space system components of general vector

body system components of general vector Qx,Qy, Qz

element of matrix transforming space coordinates to body coordinates

(see eqs. (2) to (3i))

body system components of a general vector fixed in body

space system components of vector C},C_,C_

body system components of angular velocity vector of body

total mass of vehicle

principal moments of inertia about body axes for vehicle in its initial

undeformed configuration

space system components of center of gravity of body

body system coordinates of an arbitrary point fixed in body

space system coordinates of point }p,_p,_p



FX, Fy, F Z

N_,N_?,N_

space system components of total force exerted on body through leg struts

body system components of total torque about center of gravity of body

produced by forces through leg struts

Vox, Voy, Voz space system components of velocity of center of gravity of body

E K kinetic energy of body

XF,j,Y F,j,ZF,j space coordinates of foot

_H, j,k'_TH, j,k' _H, j,k

XH,j,k, YH,j,k, ZH, j,k

Sj, k instantaneous length of a strut

UX, j,k'Uy, j,k'Uz,j,k

body coordinates of hard point

space coordinates of hard point

space components of force exerted on body through a strut

So,j,k

Ss,j,k

FR, j,k

FS,j,k

magnitude of force exerted on body through a strut, positive when sense is

from foot to hard point

amount of contraction of a strut beyond which permanent shortening occurs

length of strut when shock absorber is neither contracted nor extended,

permanent shortening due to crushing of shock-absorbing material being

taken into account

initial length of a strut

stroke (see eq. (18))

part of magnitude of shock-absorber force termed rate-dependent force

part of magnitude of shock-absorber force termed quasi-static force

FHX, j,k' FHy, j,k' FHZ,j,k

space components of unit vector directed along a strut with sense

from foot to hard point



SE C' J'k'SEE' J'k'Scc' j'kSCE'j'k t

FEC,j,k'FEE,j,k'Fcc,j,k'FcE,j,kJ

constants determining rate-dependent force

(see fig. 2)

coefficient in equation for quasi-static force (see eq. (22))

KS coefficient in equation for stop force (see eq. (23))

FH _, j,k' FHT?, j,k' FH[, j,k

AX, j,Ay, j,Az,j,Aj

body components of force FHX, j,k, FHY, j,k, FHz,j,k

coefficients in equation describing landing-surface boundary

plane associated with jth foot (see eq. (27))

Wx, j,wY, j,Wz, j, Wj normalized coefficients in equation describing landing-

surface boundary plane (see eqs. (28) to (29c))

Hj signed distance of a point from jth landing surface plane (see eq. (30))

Np,q,j,Tp,q,j elements of matrices for computing components of a vector normal

and tangential to a boundary plane, respectively (see eqs. (31a)

to (325))

FFNSX, j,FFNsY, j,FFNSZ,j part of force upon a foot acting normal to landing surface

termed quasi-static normal force

FFNS,j

Ki,j

Dj

F FNDX, j' F FNDY, j' F FND Z, j

magnitude of quasi- static normal force

coefficient in equation for FFNS, j (see eq. (38))

absolute distance from foot to landing surface plane (see eq. (39))

part of force upon a foot acting normal to landing surface

termed dynamic normal force

RN, j coefficient in equation for dynamic normal force (see eq. (40))

XFN, j,_/FN, j,ZFN,j space components of velocity of foot normal to landing
surface plane



FFTDx, jFFTDY,j , FFTDZ,j force on a foot acting tangential to landing surface plane

termed dynamic tangential force

RT, j coefficient in equation for dynamic tangential force (see eq. (42))

• ° •

XFT,j,YFT,j,ZFT,j space components of velocity of foot tangential to landing

surface plane

FFLX, j,FFLY, j , FFLZ,j space components of total force on a foot acting through

three struts bearing oll foot

FFLNX, j, F FLNY, j, FFLNZ, j space components of component of force

FFLX, j,FFLY, jFFLz,j normal to landing surface
plane

FFLTX, j, FFLTY,j,FFLTZ,j space components of component of force

FFLX, j,FFLY, j,FFLz, j tangential to landing surface
plane

t (f) some time at which a foot has just become free of landing surface

_F,j'_?F,j' _F,j body coordinates of foot

F,j'"F,j' F,j

X (f) y(f) Z (f)
F,j' F,j' F,j

body coordinates of foot becoming free at time

space coordinates of foot becoming free at time

L some characteristic length of the vehicle

t(f)

t(f)

The subscript B on any symbol denotes a nondimensional value. A dot over a

symbol denotes differentiation with respect to time t. An asterisk over a symbol

denotes differentiation with respect to t B. The superscript (n) denotes nth iteration.
I I denotes absolute values.



GENERALASPECTSOF IDEALIZATION

Overall Vehicle

The vehicle is treated as anarbitrary rigid body to which there are attachedup to
four legs, each leg consisting of three struts in an inverted tripod arrangement. (See
fig. 1.) The struts are connectedto the bodyby universal joints, and the junction point
of the three struts in a leg is also a universal joint. This junction point is called the
foot of the leg, and the points where struts attach to the body are called hard points.
There is a shockabsorber in each strut. The individual struts may shorten or lengthen
becauseof stroking of the shockabsorbers, but otherwise they do not deform. Locations
of the hard points on the body andthe initial positions of the feet relative to the body may
be arbitrarily chosen.

Body_

Hard point

Strut

\
\

\
\

Shock

absorber

j Massless leg

assembly

\

\
\

\
\
\

I
I

Foot

Figure 1.- Idealization of vehicle.

Inertias

In the idealized system the legs are considered to have no mass. The inertial

properties of the body are characterized by specification of the total mass, the center of

gravity, a set of principal axes, and the moments of inertia taken about the principal

axes. In representing an actual vehicle or model, the inertial properties are computed

for the system as a whole, including the legs. These inertial properties are then

assigned to the body alone in the idealized system. This approach has been adopted

7



becauseit permits considerable simplification of the equationsof motion and reduces
the numberof equations. The approachis reasonableif the legs are of light construc-
tion and/or deformations of the legs dueto stroking of the shockabsorbers are small;
that is, the momentsof inertia do not changeappreciably becauseof stroking of the
struts.

ShockAbsorbers

The shockabsorber in a strut is considered to produce simultaneously a force at

the hard point and at the foot to which the strut is connected. The forces are considered

to be equal in magnitude but opposite in direction and to be directed along the axis of the

strut. The magnitude of the shock absorber force is assumed to depend on the change

of length of the strut from the initial length and on the rate of change of the length. The

specific relation between the force and these variables is described in the section

"Forces and Torques on the Body."

Landing Surface

The boundary of the landing surface is represented by a set of arbitrarily oriented

planes, one plane associated with each foot. Use of a different plane for each foot allows

for the representation of many irregular surfaces. When the foot of a leg is not inter-

acting with the landing surface material, the leg is assumed to move as a rigid extension

of the body. When the foot is interacting with the landing surface material, a force acts

on the foot, and the shock absorbers may stroke. The force exerted on the foot by the

landing surface is assumed to be a function of the position and velocity of the foot. A

basic assumption of the analysis, leading to equations of motion of the feet, is that a foot

always moves in such a way that this force is kept in balance with the shock-absorber

forces bearing on the foot.

In representing the forces generated by the interaction of the foot pad with the

landing surface material, the analyst nmst face two facts. First, knowledge of the

properties of the lunar surface which would affect landing performance is as yet limited.

Second, soil mechanics has not progressed to the point where one can predict with any

confidence the history of forces on an arbitrary body impinging upon or passing through

soil even under laboratory conditions. The reaction to these difficulties has been a

rather general concentration of initial analytical effort on the case where a foot upon

contacting the surface is stopped abruptly, is effectively pinned, and remains in place

until there is a tendency for it to lift off. Cases where the feet move substantially

through or along the surface are studied by assuming laws for the force on a foot. The

procedure given by this paper is organized so that one may construct a variety of laws



for the force on a foot by specialization of constants. The details of the computation
are given in the section "Equations of Motion of the Feet."

EQUATIONSOF MOTIONOF THE BODY

The object in this part of the paper is to set downthe differential equationswhich
govern the motion of the central rigid body. Equationsof motion of the feet are devel-
opedin a subsequentsection.

Coordinate Systems

Space and body coordinate systems.- Reference is made to space and body coor-

dinate systems (fig. 2). These systems are both right-handed Cartesian systems. The

space system is assumed to be an inertial

system, and its axes are denoted by X, Y,

and Z. It is oriented so that gravitational

forces point along the negative Z-axis. The

body system is assumed to be fixed in the

body, and its axes are denoted by 4, _?,

and _. It is placed within the body so that

the origin coincides with the center of grav-

ity and the three coordinate axes coincide

with principal axes of inertia. Further con-

siderations explained under the heading

"Eulerian Angles" also enter into the estab-

lishment of the body axes.

Eulerian angles.- Rotations of the body

are specified by use of Eulerian angles qS,

0, and _ as shown in figure 3. (The hori-

X

gi

Z

Figure 2.- Space and body coordinate system.

Y

zontal orientation of the Z-axis in the sketch is merely for convenience in drawing.)

Note that the Eulerian angles are not defined in the usual way; that is, setting the angles

equal to zero does not bring the body axes into coincidence with the space axes. Instead,

the positive f-axis merges with the positive X-axis, the positive 7?-axis with the negative

Z-axis, and the positive _-axis with the positive Y-axis.

The following limits are set on the ranges of the Eulerian angles:

0 < 0 < 7r (la)

-Tr < ff < 7r (lc)



Y

g ______,Z

X

Figure3.- Eulerianangles.

Line of nodes

The limits on _ and _ do not restrict

the generality of orientations. The limits

on 0 are restrictive, however, and are

imposed to avoid encountering a mathemat-

ical singularity for 0 equal to 0 or _ as

explained in a subsequent section. As 0

approaches either of the end values 0 or _,

the (-axis approaches a horizontal orienta-

tion. Therefore, in positioning the body

axes within the body, the (-axis should be

associated with the principal axis of the

vehicle which is most nearly longitudinal.

If this is done, the restriction on 0 causes

no practical limitation on motions, because

calculation normally stops before the vehicle has tipped so far that the longitudinal axis

becomes horizontal.

Transforming vector components between space and body systems.- Let QX, QY,

and QZ be the space system components of a vector, and let Q_, QT], and Q_ be
the body system components of the same vector. As described in reference 8 and other

texts on classical mechanics, the components are related by the equation

(p : 1, 2, 3; q= 1, 2, 3) (2)

where

511

612

613

521

522

623

531

532

533

= cos _ cos q5 - cos 0 sin (!_sin gZ

= sin _h sin 0

= -cos _ sin q_ - cos 0 cos 'h sin

= -sin gJ cos @ - cos 0 sin O cos

= cos @ sin 0

= sin g_ sin $ - cos 0 cos _, cos

= sin 0sin _5

= cos 0

=sin 0cos _5

(3a)

(35)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

(3i)

I0



The matrix [Sp,_ appearing in equation (2) is orthogonal which means that its inverse

and its transpose are identical. Therefore, the inverse transformation giving space

components in terms of body components is

the T denoting the transpose. It follows from equation (4) that if C}, Cz_, and C_

are the constant body system components of a vector fixed in the moving body, and CX,

Cy, and C Z are the space components of the vector then

(4)

(5)

where a dot denotes differentiation with respect to time.

Relation between Eulerian angles and direction cosines.- The elements of the

matrix [Sp,q] in equation (2) may be interpreted as the direction cosines of the body

axes measured with respect to the space axes. That is, if one imagines a translation of

the space axes without rotation such that the origins of the body system and the translated

space system are brought into coincidence, 511 is the cosine of the angle between the

_-axis and the translated X-axis, 512 is the angle between the f-axis and the trans-

lated Y-axis, and so forth.

It is generally considerably easier to specify the direction cosines associated with

an initial orientation of the body than it is to specify the Eulerian angles. Therefore,

it is useful to have a procedure for computing Eulerian angles once direction cosines

are given. The following scheme which is easily derived from equations (3a) to (3i) has

proved to be satisfactory.

533
]_I = arc cosine (0 _--<l_bl -< _) (6a)

¢(531) 2 + (533) 2

= (531 ->0) (6b)

: -1 1 (531 < o) (6c)

= arc cosine 532 (0 < 0 < 7r) (6d)

11



I_ I= arc cosine 522 (0 < I_l =<_) (6e)

: :>0) mf)

= -I¢1 <0) (6g)

Relation between Eulerian angles and components of angaalar velocity.- Let

They are related to the rates of change of the Eulerian angies as follows:

of ref. 8.)

w_?, and w_ denote the body components of the ang_alar velocity vector of the body.

(See p. 134

w} in 0 sin_/ cos t_ 0! i

=?in 0cos_ -sin_ 0 {_

The inverse relation is

(7)

n

sin _h cos

sin 0 sin ¢)

cos _ -sin _b'

cos 0 sin $ cos 0 cos

sin 0 sin (_

0 w_?

1

(8)

The singularity referred to previously in imposing a restricted range on 0 is

involved in the factor 1/sin 0 appearing in equation (8). With the range as established,

the denominator sin _ never vanishes.

Equations of Motion

The following definitions are necessary for expressing the equations of motion of

the body:

M total mass of vehicle

I_,I_,I_ principal moments of inertia about body axes _,: 71, and

Xo, Yo, Z 0 space system components of center of gravity of body

_p,np,q_

Xp,Yp,Z_I_,j body and space system coordinates, respectively, of an arbitrary point fixed
in body

12



Fx, Fy, F z space system components of total force exerted on body through leg struts

N_,N_?,N_ body system components of total torque about center of gravity of body

produced by forces through leg struts

Vox,Voy, Voz space system components of velocity of center of gravity of body

gravitational constant

By using these definitions, the elementary equations of translation are

XO = VOX

YO = VOy

_o = Voz

MVox=Fx

MVoy= Fy

MVoz = F z - Mg

Euler's equations for rotation of the body are

I71(@1) = (w_)(_}/(I _ - I})+ N_

I_(&_) = (w_)(w_?)(I_ - I71) + N_

For completeness, equation (8) is repeated

r- sin
sin 0

COS 1_

cos 0 sin
sin 0

cos _ 0
sin

-sin _ 0

_ cos 0cos _ 1
sin 0

f

¢o

o)

60

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(lOa)

(lOb)

(lOc)

(11)

13



From equation(4), it follows that

Xp - X0

P YO

/

5p,q

T

71p

(p
_)

The preceding equations constitute the equations of motion of the body. A dimen-

sionless form of the equations more suitable for use in computation is given in a sub-

sequent section.

(12)

Kinetic Energy

It is sometimes useful to compute a history of the kinetic energy of the system

throughout an impact. The kinetic energy E K is given by the equation:

EK: T Vox+V20y+v + +_1 7]
(13)

FORCES AND TORQUES ON THE BODY

The forces which act upon the central rigid body are the gravitational force and

the forces through the leg struts produced by the action of the shock absorbers. The

object here is to write down rules for computing these forces based on practical con-

siderations which arose in analyzing the behavior of the model of reference 1.

Definitions

It is assumed that the legs have been numbered 1 t,.) 4 in any order and the struts

in each leg have been numbered 1 to 3 in any order. Cases where there are less than

four legs are handled by setting the shock absorber forces equal to zero in some legs.

The following definitions are necessary to subsequent developments:

XF, j'YF,j,ZF,j instantaneous space coordinates of foot of jth leg

_H,j,k'7?H,j,k'_H,J, k _ body and space coordinates, respectively, of hard point at which

XH,j,k'YH,j,k'ZH,j,kJ the kth strut of jth leg is attached to body

Sj,k

Vx, j,k'Vy, j,k'Vz,j,k

14

instantaneous length of kth strut of jth leg

space components of a unit vector directed along kth strut of

jth leg, the sense being from foot to hard point



FHX,j,k' FHy, j,k' FHZ,j,k space system componentsof force exerted onbody
through kth strut of jth leg

FH,j,k magnitudeof force FHX,j,k, FHY,j,k, FHz,j,k takenpositive if the force is
directed from foot to hard point andnegative if the force is directed from
hard point to foot

The following equationsmay be written on the basis of thesedefinitions:

Sj,k= I(XH,j,k- XF,j)2+ (YH,j,k-YF, j)2+ (ZH,j,k- ZF,j)211/2 (14)

Sj,k" = 1____ I(XH,j,k _ XF,j) (_:H,j,k _ _F,j )Sj, k

+ (ZH,j, k - ZF,j)(ZH,j,k- 2;F,j)I (15)

UX, j,k, Uy, j,k, Uz,j,k = Sj,-_ I(XH,j,k- XF,j), (YH, j,k- YF,j), (ZH,j,k- ZF,j)_ (16)

FHX, j,k, FHY, j,k, FHz,j,k = FH, j,k(Ux, j,k, Uy, j,k, Uz,j,k) (17)

Reference Length

The shock absorbers for the model of reference 1 were cylinders of aluminum

honeycomb mounted in the struts. For compressive loading this type of shock absorber

has a load-deflection relationship as shown in figure 4.

Load

_,__ SE,j' II
I

f

I
I
I

I

Crushing

Deflection

Figure 4.- Load deflection relationship before crushing.
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The shock absorber compresses because of elastic deformation until the load

reaches the level at which crushing of the honeycomb begins. Compression continues at

constant load as the cylinder crushes. The elastic part of the load-deflection diagram

may be nonlinear. If crushing occurs, the cylinder becomes permanently shortened,

and leaves a gap as shown by figure 5. Actually the shape of the elastic part of the load-

deflection diagram may be altered somewhat as a result of crushing; but in this analysis,

it is assumed that this shape remains unchanged.

Load (Sap

I I

_--SE j k--_
t I I

Elastic f_

/
Crushing

Deflection

Figure 5.- Load deflection relationship after crushing.

In order to account for permanent shortening, it is convenient to define a variable

called the reference length of a strut denoted by the symbol SR, j, k. Initially, the ref-

erence length is equal to SO, j, k the initial length of the strut. The stroke SS, j, k at
any time t is defined to be the reference length minus the length of the strut at time t.

SS,j, k = SR,j, k - Sj, k (18)

The length of the portion of the deflection denoted "elastic:" in sketches 3 and 4 is repre-

sented by the symbol SE,j, k. At the completion of any stroke exceeding SE,j,k, the

reference length is diminished by the amount by which the stroke exceeded SE,j, k.

Magnitude of Shock Absorber Force

It is convenient to express FH, j,k, the magnitude of the shock absorber force, as
the sum of two terms

FH,j, k = FR, j, k + FS,j, k (19)

The term FR, i,k_ is spoken of as the rate-dependent force and FS,i,k, as the quasi-
static force.

Rate-dependent force.- Figure 6 shows the relation between the rate-dependent

force and the dynamic state of the strut. With respect to the current reference length,

a strut is either extended (SR, j, k - Sj,k _-<0) or contracted (SR, j, k - Sj,k> 0). In either
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FR,j,k FR,i,k

FEC, j, k

• I FCC j, k t .
--SEE, i,R_ ' SCE,

I

I

I tI N
I " Si,k

I .

" J_'E ,j,k r SCC, i,k--

I

J,k I

I
I

I

" s.i,k

(a) Extended strut, SR,j, k - Sj,k <= O. (hi Contracted strut, SR,j, k - Sj, k >= O.

Figure 6.- Relationship between rate-dependent force and the dynamic state of the strut•

may be extending '/Sj,k > 0)\ or contracting '_[Sj,k _-<"_0). For each of the fourcase the strut

possible combinations of these conditions, the rate-dependent force FR, j, k is described

by a separate ramp function of Sj,k, the rate at which the strut length is changing. Eight

arbitrary constants associated with each strut establish the shapes of the ramps. These

constants are SEC,j,k' SEE,j,k' SCC,j,k' and SCE,j,k which bear the units of velocity

and FEC,j,k , FEE,j,k , FCC,j,k , and FCE,j,k which bear the units of force. As fig-

ure 6 indicates, the velocity constants establish ranges of Sj,k within which FR, j, k

varies linearly with Sj,k and beyond which FR, j, k is a constant. The force constants

establish the heights of the ramps. The subscripts EC, EE, CC, and CE, respec-

tively, denote the conditions extended and contracting, extended and extending, con-

tracted and contracting, and contracted and extending.

Quasi-static force.- The quasi-static force is considered to be zero unless one of

the following conditions holds: (1) The strut is contracted with respect to the current

reference length and is extending

SR, j, k - Sj, k > 0 (20a)

Sj, k > 0 (20b)
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(2) The strut is extendedbeyondits initial length So,j, k and is extending

Sj,k - SO,j,k _->_0

Sj,k > 0

(21a)

(215)

Whenthe first condition holds, the force is assumedto be given by the following

third-order polynomial function of the stroke SR,j,k - Sj,k:

Fs,j,k = Pl,j,k + P2,j,k(SR, j,k - Sj,k) + P3,j,k(SR,j,k - Sj,k) 2 +P4,j,k(SR, j,k - Sj,k) 3

(22)

wherein the constants P/,j,k (l = 1, 2, 3, 4) may be arbitrarily selected. For this con-

dition the stroke is always less than or equal to SE,j, k because of the way SR, j, k is

reset at the completion of a period of contracting which necessarily precedes a period

of extending. Figure 7 shows an example of how the quasi-static force might vary with

the stroke SR, j, k - Sj, k.

FS,j,k

SE, j k -4,

SR,j, k - Sj, k

Figure I.- Quasi-static force diagram for strut contracted but extending.

When the second condition holds, the equation for the quasi-static force is"

Fs,j,k=-Ks(sj,k- So,j,k)
where K S is an arbitrary positive constant.

(23)

Representing Forces for the Model of Reference 1

The preceding relations between the magnitude of the shock absorber force and the

dynamic state of a strut were established with the following three objectives in mind:
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(1) to represent constantforce crushing andfree extensioncharacteristic of the alumi-
num honeycombshockabsorbers used on the modelof reference 1, (2) to represent
measuredelastic characteristics of the model, and (3) to represent, in a gross way,
energy dissipation due to causes other thancrushing of the honeycombto prevent unreal-
istic bouncingof the idealized system.

Constant force crushing.- To accomplish the first objective, the constant FCC,j,k
of the rate-dependent force is set equal to the force at which the honeycomb crushes,

and the constants FEC,j,k , FEE,j,k , and FCE,j,k are assigned relatively small values

for a nominal representation of frictional resistance to stroking produced by the bearings

in the strut. The constants SEC,j,k, SEE,j,k, SCC,j,k, and SCE,j,k are assigned

values greater than zero but small compared with the average stroking rate of the shock

absorbers. With these settings, the shock absorbers will operate on the constant-force

parts of the rate-dependent force diagrams except when stroking rates are very low.

When stroking rates are very low, it is desirable to operate on the sloping part of the

rate-dependent curves in order to avoid an annoying problem in numerical integration of

the equations of motion. The problem is an oscillatory instability of the calculated

stroking rates Sj,k which is encountered when very large forces occur sinmltaneously

with very small stroking rates so that the sign of a stroking rate may change on one time

step and change back on the next time step.

Elasticity.- For the second objective, the constants SE,j, k and Pl,j,k are
chosen for all struts to represent insofar as possible the elastic behavior of the model.

Since there can be significant elastic deformations of the body as well as of the struts

and shock absorbers, the validity of such a representation is open to question. This is

an important limitation arising out of the simplifications made in the analysis. Refer-

ence 1 describes in detail a procedure used to assign these constants for the test model.

The procedure involved a series of static load tests of the model with various leg struts

removed. In spite of the questionable aspects of the representation, the procedure

resulted in good predictions of the outcome of test impacts in which elastic rebound was

a significant influence.

Damping.- It is noted that for the idealized system, there may be an axial elastic

force in a strut which is contracted with respect to the reference length only when the

strut is extending. If a strut is contracted with respect to the reference length and is

contracting the full crush force, FCC,j,k resists the stroke unless the stroking rate is

less than the constant SCC,j,k" As discussed previously, SCC,j,k is set very low com-

pared with the stroking rates expected throughout most of the impact. The elastic force

must be lower than the crush force. Therefore, for any appreciable loading rate, it

takes more energy to compress a strut spring than is given up when the spring unloads.

As a result, elastic action is damped. This representation is not realistic. A strut
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containing a crushable aluminum honeycomb shock absorber both loads and unloads

elastically with a period of crushing between ifthe loads get high enough. Energy losses

other than those caused by crushing of the honeycomb come about in diverse ways. How-

ever, the representation described here has been found to be an easy way to provide

some damping for the idealized system during that part of an impact history during which

loads have subsided to the point where the honeycomb in the shock absorbers no longer

crushes. If such damping is not provided, the idealized system will bounce erratically

throughout this period. This result is contrary to the behavior of the model of refer-

ence 1 during test impacts. There the motion was quickly damped to that of a smooth,

essentially rigid body, pivoting about one or two feet pressed against the landing surface.

Unrealistic bouncing can result in erroneous predictions as to whether the model will

overturn as the result of an impact. Representation of the elasticity of the model is not

marred by removing the elastic forces from the compressive part of the stroke. Elastic

action of the model appears to be significant only during a few initial relatively hard

impingements of the feet on the landing surface. On the compressive part of the stroke

during such an impingement, the strut compresses through the elastic part of the stroke

so quickly that it does not matter what representation of the force is used. The primary

effect of elastic forces comes as they impart a push to the vehicle during extension of a

strut.

Quasi-static force for an extended strut.- The force given by equation (23) is not

considered to be of very general interest. It was included in the programing in order to

keep struts from extending beyond their original lengths since the struts of the model of

reference 1 could not do so. A force which was linear in the extension rather than a

step force was chosen to avoid instability in the numerical integration of the type dis-

cussed previously. The force acts only if the strut is ex_tending, and it opposes exten-

sion. Consequently, it can only absorb energy and can never add energy to the system.

This aspect of the programing is important because the constant K S must be set very

high to prevent substantial extension of the strut. If the force is programed as a spring

which can return energy to the system, lightly damped high-frequency oscillations may

be introduced into the calculated motion and cause difficulties in the numerical

integration.

Total Forces and Torques

The space system components of the total force acting on the body are computed

by the equation

j=4 k=3

: Z
j=l k=l

20



The body system components of the force acting on the body at a hard point are

denoted by FH_,j,k, FHv,j,k, FH_,j,k and are related to the space system components
of the force by the equation

FH_,j,k

FH_,j,k

_FH_,j,k

5p,q

FHX, j,k

FHY, j,k

FHZ,j,k

(25)

The body system components of the total torque acting on the body are given by

j=4 k=3

N_= _ _(_?H,j,kFH_,j,k -
j=l k=l

j=4 k=3

N77= _ _ (_H,j,kFH_,j,k -
j=l k=l

_H,j,kFHN,j,k)

SH,j,kFH_,j,k)

N_ : (_H,j,kFHu,j,k- UH, j,kFH_,j,k)
k=l

the equations:

(26a)

(26b)

(26c)

EQUATIONS OF MOTION OF THE FEET

Considerations Related to Landing Surface Planes

Equations of planes.- The landing surface plane associated with the jth foot is

described by an equation of the form:

Ax, jX + Ay, jY + Az,jZ + Aj = 0

where AX, j, Ay, j, AZ,j, and Aj are constants which may be artibrarily selected.
The equation is rewritten with normalized coefficients as follows in order to avoid

ambiguity in specifying the position of a point in space relative to the plane:

where

Wx, jX + Wy, jY + Wz,jZ + Wj = 0

WX, j,Wy, j,Wz,j,W j =

AZj_ A 2+ A 2 A 2+
Az, j ¢ O)

(27)

(28)

(29a)
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WX,j,Wy, j,WZ,j,wj =

WX, j,Wy, j,Wz,j,W j =

- A . A .,A .,A .,--

l, A ,2 2 (Az,j = 0,+

- AX, jl AX, j'Ay, j,Az,j,

(Az, ] =0, Ay, j = O,

AX, jt A 2 A 2 A 2C + +

Ay, j _ 0)

(29b)

AX, j ¢ 0)

(29c)

Normals.- The vector WX, i,Wy,i,Wz,j_, is normal to the landing surface plane

associated with the jth foot. As a result of the normalization procedure just described,

the normal is a unit vector directed as follows:

(1) If the jth plane is not vertical, the projection of tim normal on the Z-axis points

in the positive Z-direction.

(2) If the jth plane is vertical but not parallel to the Y-axis, the projection of the

normal on the Y-axis points in the negative Y-direction.

(3) If the jth plane is vertical and parallel to the Y-axis, the normal points in the

negative X-direction.

Surface and subsurface sides of a plane.- A landing surface plane divides inertial

space into two spaces, one into which the normal is directed and one out of which the

normal is directed. Points lying within the space into which the normal is directed are

said to be to the surface side of the plane. Points lying within the space out of which the

normal is directed are said to be to the subsurface side of the plane.

Distance of a point from a plane.- Let the symbol Hj denote the length of the per-

pendicular from a general point X,Y,Z to the jth landing surface plane. The distance

is considered positive if the point is to the surface side of the plane and negative if the

point is to the subsurface side of the plane. The following formula then gives the

distance:

Hj = Wx, jX + Wy, jY + Wz,jZ + Wj (30)

Normal and tangential projections of a vector.- If tt_e space system components

Qx, Qy,Qz of an arbitrary vector are given, it will be necessary to resolve the vector

into the sum of a vector normal to and a vector tangential to the jth landing surface plane.

The components in the space system of the normal and tangential vectors are, respec-

tively, NX, j,Ny,j,Nz, j and TX, j,Ty, j,Tz, j and are readily computed with use of the

following relations:
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x,_
Y,# =

z,_

(31 a)

where

Np,q,_ =

x,_
Y,# =

z,_

Tp,q,j Qy

W 2(_,_) (Wx,_)(w_,_)(Wx,_)(Wz,_
(wx,_)(w_,_)(w_,j)_ (w_,j)(wz,_)

(31b)

(32a)

!_,_,t:_(_,_(w_,_>iwx,_+(wz,_l__(w_,_/(wz,_I ,_,

Free and penetrating foot.- The following definitions are made to facilitate concise

statements regarding whether a foot is interacting with the landing surface material.

The jth foot is said to be free if any of the following conditions hold:

(a) The foot is on the associated landing surface plane

Wx, jXF, j + Wy, jYF, j + Wz,jZF, j + Wj = 0 (33)

(b) The foot is to the surface side of the plane

Wx, jXF, j + Wy, jYF, j + Wz,jZF, j + Wj > 0 (34)

(c) The foot is to the subsurface side of the plane; and at the same time, the veloc-

ity component of the foot normal to the plane tends to carry the foot toward the plane
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Wx, jXF, j + Wy, jYF, j + Wz,jZF, j + Wj < 0

• • .

Wx, jXF, j + Wy, jYF, j + Wz,jZF. i > 0

(3 5a)

(35b)

The jth foot is said to be penetrating if itis to the subsurface side of the plane, and at

the same time the velocity component of the foot normal to the plane is either zero or

tends to carry the foot away from the plane

Wx, jXF, j + Wy,jYF, j + Wz,jZF, j + Wj < 0

WX, jSCF, j " .+ Wy, jYF, ] + WF._,.1.Z F,j _ 0

(36a)

(36b)

Forces on a Penetrating Fool

When a foot is penetrating, it is considered to interact with the landing surface

material and thus produces a force on the foot. Additional forces act on the foot through

the three struts bearing on it. The force caused by the m|eraction with the landing sur-

face material is considered to be the resultant of three separate forces termed the

quasi-static normal force, the dynamic normal force, and the dynamic tangential force.

Quasi-static normal force.- This force acts normal to tile landing surface plane

associated with a foot and may therefore be expressed for the jth foot as

FFNSX, j,FFNsY,j,FFNsZ,j = FFNS, j (Wx, j,Wy,j,Wz,j) (37)

Here FFNSX,j, FFNSY,j , and

FFNS, j is a scalar, and WX, j,

real vector previously defined.

FFNSZ,j are the space system components of the force,

Wy,j, and WZ, j are the components of the unit nor-

The scalar FFNS, j is taken to be a cubic function of

the variable Dj which is defined to be the absolute length of the perpendicular from the

jth foot to the associated landing surface plane.

FFNS, j = KI,jD j + K2,jD _ + K3,jD _ (38)

where the coefficients Ki, j (i = 1, 2, 3) may be arbitrarily assigned• From equa-

tion (30), Dj may be computed by the formula

Dj = IWx, jXF,j + Wy,jYF, j + Wz,jZF, j + Wjl (39)

Dynamic normal force.- The space system components of this force are denoted

FFNDX, j , FFNDY,j , and FFNDZ,j. The force is proportional to the component of the

velocity of the foot normal to the associated landing surface plane and acts in the direc-

tion opposite to that of the normal velocity; that is,
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where

ZFN, j

equation (3 la),

_ -1 (XFN,j,_FN, j,_FN, j ) (40)FFNDX, J' FFNDY, J' FFNDZ,J RN, j

RN, j is a positive constant to be arbitrarily assigned and XFN, j, _rFN,j , and
are the space system components of the normal velocity of the foot. By

"XFN,j_.

YFN, j 1
Np, q,j

LzF, 
(41)

The dynamic normal force has the character of a frictional resistance to penetra-

tion into the landing surface by the foot. The constant RN, j has the character of the
reciprocal of a viscosity constant.

Dynamic tangential force.- This force is the tangential counterpart of the

dynamic normal force. The space system components of the force, denoted

FFTDX, j, FFTDY, j,FFTDZ,j , are given by the equation

where RT, j

tem coordinates of the tangential velocity given according to equation (31b) by

- (42)FFTDX, j'FFTDY, j'FFTDZ,J RT, j

is a positive constant, and XFT,j, _rFT,j , and 7'FT,j are the space sys-

Tpqj (43)

Force through the struts.- The force acting on a foot through a strut is equal in

magnitude but opposite in direction to the force FHX, j,k, FHY, j,k, FHz,j,k which is

exerted through the strut onto the hard point at which the strut is attached to the body.

Therefore, the space components FFLX, j, FFLY, j, and FFLZ, j of the total force on

a foot through the three struts bearing on the foot may be computed by the formula

k=3

FFLX, j,FFLY, j,FFLz, j =- _ FHX, j,k, FHY, j,k, FHz,j,k (44)
k=l
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By using equations (31a) and (31b), this force can be resolved into a force normal to and

a force tangential to the associated landing surface plane with space components given

by the respective equations:

F F LNX, j

FFLNY, j

FFLNZ,j

FFLTX,_

FFLTY,_

FFLTZ,_

Np,q,j

Tp,q,j

FFLX, j

FFLY, j

FFLZ,j
J

_FFLx, j_

FFLY, j (

FFLZ,jJ

(45a)

(455)

Equation for a Penetrating Foot

Summing the forces on a foot in the normal and tangential directions gives the fol-

lowing equations:

XFT,j,YFT,j,7'FT,j = RT, j (FFLTX, j'FFLTY, j'FFLTZ,j)

Adding equations (46a) and (46b) gives

+ RN, j (FFLNX, j, FFLNY, j, FFLNZ, j)= FFNs,jRN_ j (Wx, j'Wy, j'Wz,j)

(46a)

(465)

• ° •

XF,j,YF,j,ZF,j

+ RT, j (FFLTX, j'FFLTY, j'FFLTZ,j) (47)

Equation (47) is the equation of motion for the jth foot when the foot is penetrating.

Equation for a Free Foot

For computing the trajectory of a free foot, it is assumed that the lengths of the

three struts connecting the foot to the body remain fixed so that the foot moves as a

rigid extension of the body. Let _F,j,_F,j,_F,j

nates of the jth foot. From equation (2)

denote the instantaneous body coordi-
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liF'

F,

F,

5p,q

XF,

_ _zF,

(48)

Suppose that at a specified time t (f) a foot has just become free. This time may be

the initial time or a later time following a period of penetration. The space coordinates

of the foot at this time may be presumed to be known and are denoted by X (f) Y(f) Z (f)
F,j' F,j' F,j"

The corresponding body coordinates are denoted by _(f),j v(f), and _(_ and may be' F,j ,j

computed from equation (48). The body coordinates of the foot remain fixed as long as

the foot remains free. Therefore, during this time the space coordinates of the foot may

be computed from equation (4) as

F,j.' _ =

'F,j_ _

5p,q

(_"

T _(f)_

! F,JI

F,JI

_.F,j_

Xo

+ YO

Z

(49)

Equation (49) is the equation of motion of the jth foot which is used when the foot is free.

DIMENSIONLESS EQUATIONS

The purpose of this part of the paper is to convert the equations of motion and cer-

tain auxiliary relations into equivalent dimensionless forms. Working with dimension-

less equations of motion facilitates the application of results to both model and full-scale

versions of a vehicle as is frequently necessary in studies of lunar landing dynamics.

Also, replacing time by a dimensionless variable allows one to rely to some extent on

previous experience in sizing the time step for numerical integration of the equations of

motion.

Definitions of Dimensionless Quantities

The symbol for a dimensionless quantity is generally formed by adding the letter

B to the subscript in a corresponding dimensional quantity. (The only exceptions to

this rule are the dimensionless quantities defined by equations (56a) to (57) and quantities

such as UX, j,k,Uy, j,k, Uz,j, k and WX, j,Wy, j,Wz, j which are dimensionless as

defined.)
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Time.- Time t

tB= '_

and L represents some characteristic length.

with respect to t B.

is replaced by the dimensionless variable t B where

t

An asterisk denotes differentiation

Lengths_ forces, and velocities.- Lengths, forces, and linear velocities are ren-

dered dimensionless by dividing them, respectively, by L, Mg, and _.

Lengths:

Forces:

(5O)

For example,

1
XOB = _ X O (51a)

Velocities:

1 FX (51b)
FXB = M---g

* 1 " (51c)

XFB,j - g_ XF,j

The dimensionless quantities arising in this manner (and denoted by subscript B)

are as follows:

From lengths From forces !
................. i

XB'YB' ZB I FXB' FyB' FZB

_B'_TB ' _B

XOB, YOB, ZOB

(PB' _?PB' _PB

XpB,YPB, ZPB

XFB,j,YFB,j,ZFB, j

XHB,j,k'YHB, j,k, Z HB,j,k

_HB,j,kQ?HB, j,k' _HB,j,k

SB,j,k

SEB,j,k

SRB,j,k

SoB,j,k

SSB, j,k

WB, j

HB,j

DB, j

_FB,j'_FB,j'_FB,j

I FHXB,j,k, FHYB,j,k, FHZB,j,k

FHB,j,k

FRB,j,k

FSB,j,k

FECB,j,k

FEEB,j,k

FCCB,j,k

FCEB, j,k

FH_B,j,k' FH_B, j,k'FH_B,j ,k

FFNSB, j

FFLXB,j'FFLYB,j' FFLZB,j

FFLNXB,j'FFLNYB,j'FFLNZB, j

FFLTXB,j' FFLTYB,j' FFLTZB, j

From velocities

VOXB'VoYB'VOZB

XOB,YoB, ZOB

SB,j,k

XHB,j,k,YHB,j,k, ZHB,j,k

SECB,j,k

SEEB,j,k

SCCB,j,k

SCEB,j,k

XFB,j,YFB,j, Z FB,j
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Additional quantities.- Miscellaneous additional dimensionless quantities necessary

for remaining developments are defined by the_,._f°ll°wing equations: (52)

VOxB,VoYB,VOz B g_

w EB,O_ B,_ _B = _gL--i_ _'_'_°_I

W_B'WNB'W_B = _,w_,oJ

(53)

(54)

N _B,N_B ,N_B

(55)

IqEB,I{_B = i_(ITT'I{I

i i_,I_B, I_B = _ _)

I_{B,I_B = _ _'lq)

(56a)

(56b)

BEB,B_B,B_B = MLZk

Lt-i
PB,Z,_,k= m---"g"V_,_,_

(l= i, 2, 3, 4)

L KS
KSB =

LiKi,]

KB,i,j 1Vig

(i = 1, 2, 3)

RNB,],RTB,_ = NI_ IRN,]'RT']I

1 EK
EKB = MgL

(56c)

(57)

(5B)

(59)

(60)

(61)

(62)
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Dimensionless Form of Equations of Motion of Body

The following dimensionless form has been adopted for the equations of motion of

the body. These dimensionless equations are readily derived from equations (9a) to (12)

with use of the definitions of dimensionless quantities which have been established in

this part of the paper.

XO B = VOXB (63a)

YOB = VOYB (635)

ZO B = VOZB (63c)

VOXB = FX:B (63d)

*

VOYB = FyB (63e)

VOZ B = FZB - I (63f)

W_B =W_BW_B _/_B- I¢_B 4. N_B

o.,1B = WCBW_B(I¢_IB - I_B) + N ylB (64b)

o_¢B = W_BWTIB(I_¢B _ I/¢B ) + NCB (64c)

sin _ cos
sin 0 sin 0

cos _ -sin ¢

cos 0 sin _ _ cos 0 cos
sin 0 sin

0 o_

0 Vr/B/

1 _¢BJ

(65)

f

XpB - XOB

YPB-YOB

ZpB-ZOB

6p,q
(66)

Dimensionless Form of Equations of Motion of Feet

The dimensionless forms adopted for the equations of motion of a penetrating foot

and a free foot are, respectively,
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+RNB,j(FFLNXB,j,FFL_B,j,FFLNZB,j)

+ RTB,j (FFLTXB,j'FFLTYB, j'FFLTZB,j)

XFB,j_

YFB,j I

6p,q

T
_(f)
FB,

_(f)
FB,

r(f)
_FB, ZOB_

These equations are derived from equations (47) and (49).

(67)

(68)

Dimensionless Form of Auxiliary Relations

To facilitate working with the equations of motion in dimensionless form, a number

of the relations established in the preceding sections are rewritten here in equivalent

dimensionless forms:

From equation (13):

1 2
EKB =-1fV22\OXB +V2yB+V2zBI+_(B_BW_B+BT?BW2 B + B_BW_B 1 (69)

From equation (14):

X 2 - FB,j) +(ZHB,j,k-ZFB,j)_JSB,j, k= [(XHB, j,k- FB,j) + (YHB,j,k Y 2 2-]1/2 (70)

From equation (15):

SB,j,k* _ SB,j,kl [(XHB, j,k _ XFB, j)(:_HB, j,k _ :_FB,j )

+(Y.B,j,k-  FB,j)+ ZFB,j

(71)
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From equation (16):

UX, j,k, Uy,j,k'Uz,j,k -- - <Y B,i,k-YFB,j)'(Z_B,j,k- ZFB,j )_

(72)

From equation (17):

FHX]3,j,k, FHYB,j,k, FHzB,j,k = FHB,],k(Ux, j,k, Uy,j,k'Uz,j,k)
(73)

From equation (18):

SSB,j,k = SRB,j,k - SB,j, k
(74)

From equation (19):

FHB,j,k = FSB,j,k + FRB,j,k
(75)

From equation (22):

FSB,j,k = PB, l,j,k + PB,2,j,k(SRB,j, k - SB,j,k) + PB,3,j,k(SRB,j,k
-S 2

B,j,k)

+ PB,4,j,k (SRB,j,k -
S 3

B,j,k)

0 < SRB,j,k - SB,j, k < SEB,j,k;
(76)

From equation (23):

FSB,j,k = -KsB (SB, j,k - SOB,j,k) (0 =_SB,j, k - SOB,j,k;
0 < SB,j,k) (77)

From equation (24):

j=4 k=3

FxB, FyB,FzB= _ !

From equation (25):

]=1 k=l

FH_B,j,k

FHrTB,j,k =

IF_,_,_ _

FHxB,j,k, FHYB, j,k' FHZ B,j,k)

5p,q

FHXB,j,k

FHYB, j,k

FHZB,j,k

(78)

(79)
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From equation (26a):

N}B

j=4 k=3

= _ _L_ L_ _:-L-_(1 F -
j=l k=l "_B\_HB'j'k

H_B,j,k _HB,j,kFH_?B,j,k)

From equation (26b):

N_?B =

j=4 k=3

___A_l ( F -
j=l k=l B_B\_HB'j'k

H_B,],k _HB,j,kFH_B,j,k)

From equation (26c):

N
_B =

j=4 k=3

j=l k=l
B_ B (}HB,],k H_?B,],k -

_HB, j,kFH _B, j,k)

From equation (28):

Wx, jXB + Wy,jy B + Wz,jZ B + WB, j = 0

From equation (30):

H B = Wx, jX B + Wy, jY B + Wz,jZ B + WB, j

From equation (38):

FFNSB,j = KB, I,jDB, j + KB,2,jD2,j + K- 3 "D3_ "D, ,] D,]

From equation (39):

DB,j = tWx, jXFB,j + Wy, jYFB,j + Wz,jZFB,j + WB,jl

From equation (44):

FFLXB,j,FFLYB,j,FFLZB,j = -

k=3

FHXB,j,k, FHYB, j,k, FHZ B, j,k

k=l

(8Oa)

(80b)

(80c)

(81)

(82)

(83)

(84)

(85)
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From equation(45a):

From equation (45b):

f

FFLNXB,j

F F LNYB, j

FFLNZB,j,

FFLTXB,j

FFLTYB_j

FFLTZB,j

Np,q,j

Tp,q,j

--, f _%

FFLXB,j

F F LYB, j

FFLZB,_

- F -'
FLXB,j

FF LYB, j

FLZB,!_

(86a)

(86b)

NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

A brief discussion of the basic ideas involved in the numerical integration of the

equations of motion is given in this section.

Recurrence Equations

The fundamental equations used in the integration are the following equations

which form a set of recurrence equations. A superscript (n) indicates that a quantity

is computed by or is otherwise associated with the nth of successive applications of the

recurrence equations. The quantity At_n)- is the increment of dimensionless time used

on the nth application.

X_%) y(n) z(n) (_:(n-1) v(n-1) 7(n-1)_ /*(n-l) _r(n-1) *(n-1)_
' OS' OB _"OB '--OB '=OB / At(Bn) (87a)= + \"OB '--OB "JOB ]

V (n) V (n) V (n) (v(n -1) v(n- 1) v(n- 1)_ ^t(n) (*r(n- 1) *r(n- 1) *r(n- 1)_
OXB' OYB' OZB = k'OXB'--OYB'--OZB] + -'B \-OXB'--OYB''OZB] (875)

w(n) w(n) 00(n) (,(n-l) ,(n-l) ,(n-l))+ At(n)/*(n-1) *(n-l) _o(n-1)_ (87c)

* * *

v(n) v(n) _(n) (v(n) V (n) ,V (n) h (88a)
"hDB,_OB,_OB = \ OXB' OYB OZB]

* * * 1)
v (n) v (n) v (n) (F (n) F (n) F (n) (88b)
--OXB'--OYB'--OZB = \ XB' YB' ZB-
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Iffoot j is penetrating at

x(n) v(n) _ (n)
FB, j'--FB,j'_FB,j

*_)=w(n)w (n)/I _-I_B)+N(.nJ

_B _B_ _,_ 77B

_B = _B uB _B %m

t(Bn-1)

(*(.-_)*(.-1)_(.-_)_
(X(_B1.), Y(_BI.!, Z }B 1)_ &t})\'" FB,j'--FB,j' FB,j]\ ,j ,] ,31 +

(89a)

(89b)

(B9c)

(90)

If foot j

If foot j

_(n) *(n) _(n)
FB,j,--FB,j' FB,j = RNB,jF(_N1)B,j (Wx, j'Wy, j'Wz,j)

+ RNB,j \'FLNXB,j' FLNYB,j'

+ RTB, j (F_L1T)XB, j, F_L 1T)YB,j, F_L_Z B, j)

is free at t(n-l)

x (n)

FB,j I

y(_)

FB,JI
z(n)|
,_FB,j)

6(n)

P,q

(n-{

FB, I

_((n)

I FB,j

i (n)
I FB,j

_(n)
P,q

-T

_(n-1)_ IV_::_)XB"_

OYB

iS free at t(Bn) and free at t(Bn-1)

E(n) _(n) e(n) = }_B_ _,(n-1)r(n-1)FB,j,',FB,j,_FB,j '"FB, j'_FB,j

(91)

(92a)

(92b)

(937
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i  oot is reeat andpenetratingat

)B,: = P,q

or if foot ] is penetrating at

x(n)
FB,j - x_n)B

-
z(n) z(n[

FB,j O_

(94)

Auxiliary equations, for example, those relating forces and torques to the system

variables, are used in the integration. Also, on each step a series of tests is performed

to establish the dynamic state of each strut so that operations such as selection of appro-

priate force equations and proper setting of reference lengths may be performed. The

auxiliary computations and tests are not shown here but are described in complete

detail in the section "Programing Instructions."

Relation to Euler's Method

The integration scheme is practically identical to the classical straightforward

method of Euler. (See ref. 9.) It differs from Euler's method only in the following

respect:

Euler's recurrence scheme, stated for simplicity for a single-degree-of-freedom

system with dependent variable

a = f(_tB) (95)

amounts to the following:

c_(n) = a(n-1) + At(Bn)_(n-1) (96a)

*(n)= f (Jn),t(n)) (96b)

However, if rate-dependent forces are considered, the single-degree-of-freedom analog

of the dimensionless equations of motion does not take the form of equation (95) but is

rather

The variable

the rates of change of the strut lengths.

because _ is not an explicit function of

= f c_,tB (97)

on the right appears because the forces and torques may depend upon

Thus, Euler's method is not directly applicable

and t B.
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To get around this difficulty andyet preserve the basic simplicity of Euler's

_(n) _(n) _(n) for a penetrating footmethod, the dimensionless foot velocities FB,j' FB,j' FB,j

are not computedas functions of the forces on the foot at t(Bn) as would be required by

a strict application of equation(96b)but as functions of the forces at t(Bn-1) as equa-

tion (91)shows. Thus, the dimensionless accelerations *r(n) {r(n) _r(n) and
--OXB'--OYB'--OZB

*(n) *,(n) *,(n) (Bn-1)_B'-_/B'-_B are partially dependent upon conditions at t because the forces

F(_,F (n) F (n) and the torques N (n) N (n) N (n) depend on _(n) _(_)B,j' and _(n)YB' ZB _B' _B' _B FB,j' FB,j"

In contrast to Euler's method, therefore, the recurrence scheme depends on the informa-

tion at both t (n-l) and t(Bn'2) in computing the system variables (X(on)B,Yo(_,Z_)B) ,

(v(n) v(n v(n) 
\ OXB' OYB' OZB]' and \ _B' _B' _B/"

If rate-dependent forces were suppressed, that is, if

FEC,j,k, FEE,j,k, Fcc,j,k, FcE,j,k = 0,0,0,0 (98)

and if on the right in equation (91) the superscripts n-1 were replaced by n, the

recurrence scheme would reduce to Euler's method.

Efficiency and Validity

The method for integration was selected because it is very easy to program and

because all the mathematical relations in the scheme may be interpreted physically.

Efficiency was not a primary consideration. However, discussions with other workers

in analysis of lunar landings have led the authors to believe that the method is relatively

efficient in regard to consumption of computer time compared with methods now in use.

About 2 minutes are required to compute an impact history with an IBM 7094 digital

computer. Although the recurrence equations as given indicate a variable time interval

At(Bn),- the authors to date have programed a constant time interval throughout an impact.

The computer time could probably be reduced by using a short time interval during the

initial part of an impact when accelerations are generally high and a longer one later

when accelerations have been reduced.

The authors are unable to offer any rigorous demonstration of the validity or accu-

racy of the integration method. The method has been tried on a number of systems

selected so that exact solutions for the motion could be computed, falling bodies, for

example. The approximate solutions have consistently been in good agreement with the
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exact whensufficiently small increments of the dimensionless time are used. Further
confidencein the methodhasdevelopedas a result of the goodcorrelation betweenana-
lytical andtest results reported in reference 1.

PROGRAMING INSTRUCTIONS

The object in this part of the paper is to provide instructions which expedite pro-

graming a digital computer to carry out the computation of an impact history. The

instructions are based entirely on relations which have been established in preceding

parts of the paper. A constant time interval is assumed.

Basic Organization

The suggested basic organization of computing is shown in block diagram form:

I Input ]

Dimensionless

input

r
Numb e r

required

I_

Initialization

I

Integration

cycle

Dimensionless

As or

required dimensional

outiut

A table of input information is read which describes the vehicle, the landing sur-

face, and the initial orientation and velocities of the vehicle. The input is converted to

dimensionless form by use of the definitions and relations in section "Dimensionless

Equations." Then initial values of all quantities of interest are computed. After ini-

tialization, the computation proceeds into the integration cycle. On each pass through

the integration cycle, the recurrence equations discussed in "Numerical Integration of

the Equations of Motion" are applied to advance computation of the variables of the
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system one step in time. As often as desired, quantities are extracted from the integra-
tion cycle as output. Sometimes, it is convenientto convert the output to dimensional
form.

Input

The quantities required as input are listed.
j = 1,2,3,4; k= 1,2,3; l = 1,2,3,4;

Gravitational constant: g

Characteristic length: L

Mass: M

Principal inertias: I_,I_,I_

Body coordinates of hard points:

Initial body coordinates of feet:

Shock absorber constants:

Pl,j,k

SE,j,k

FEC, j,k' FEE, j,k' Fcc,j,k' FCE, j,k

SEC, j,k'SE E, j,k'Scc,j,k'ScE, j,k

KS

The subscripts range as follows:

i= 1,2,3; p= 1,2,3; q= 1,2,3.

_H,j,k'_H,j,k' _H,j,k

4(0) .(o) t,(o)
F,j'"F,j' _F,j

Boundary plane coefficients: AX, j,Ay, j,Az,j,Aj

Surface impedance coefficients: RN, j, RT,j, and Ki, j (Do not set RN, j or

RT, j precisely equal to zero. In the present
computing scheme, this procedure will cause

the feet to be locked onto the landing surface

plane. If infinite viscosity is desired, use very

small finite values for RN, j and RT,j. )

..(0) v(0) z(0)
Initial space coordinates of center of gravity: _ '_O ' u

Initial space components of velocity center of gravity: V (0) V (0) V (0)OX' OY' OZ

Initial direction cosines of body axes with respect to space axes: p,
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oJ(°) _(°) (0)
Initial components of angular velocity referred to body axes: _ , _ ,w_

Dimensionless time increment: At B

Conversion of Input to Dimensionless Form

The computations necessary to render the input dimensionless are as follows:

1

I77_B,I_B = i"_ (1_9' I _)

II_r/B'I _ B I77

1

I_B,I,_B = ]--_ (I _,I_)

1

_HB,i,k,,HB,_,k,_HB,i,g = E (_H,j,k,_TH,j,g'_H,j,k)

_(o) ,_ (o) do) 1 (Ao) Ao) _(o)
FB,i FB,j'_FB,_ - E\"F,_'"F,_' F,y

L l- 1

= -- Pl,j,kPB,/,j,k Mg

1
SEB,j,k = _ SE,j,k

1-!---(FEC,j,k, F E E,j,k,F C C,j,k,F CE, j,k)FECB,j,k'FEEB,j,k'FccB,j,k'FcEB,j, k = Mg

. . • * 1 • " j,k,_CC,j,k,SCE,j,k)
SECB,j,k, SEEB,j,k, SccB,j,R, ScEB,j,k = --_ (SEC,j,k, SEE,

L KS
KSB = M-_

RNB,j,RTB,j = M'_ (RN, j'RT,j)

KB,i,J = Mg

XoB, YoB,'_OB = L\ O

V(0) V(0) XT(0) = 1 (._r(O) ._r(O) vf(O)_

OXB,--OYB'--OZB _ _'OX'-OY'-OZ]
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_(0) _(0) _(0) ,_(_(0) _(0) _(0)/
_B' _B' _B = _g'_ _ , 77 ' _ }

Integration Cycle

The integration cycle is discussed before initialization because the necessity for

the steps in initialization is much easier to understand once the integration cycle is

understood. Upon entering the integration cycle for the first time, all quantities with

superscript zero will have been provided as input or computed under initialization.

Also the following quantities will have been computed under initialization:

WX, j,Wy, j,Wz,j,WB,j

B_B,BT?B,B_B

Upon entering the integration cycle for the nth time (n > 1), all quantities with superscript

(n-l) will have been computed on the previous pass through the integration cycle.

The organization of the integration cycle is shown in the block diagram which fol-

lows. The circled numbers indicate the connections to be made from page to page.

After the block diagram are listed the relations and tests necessary to perform the

operations called for in each block. A block is identified by the number at the upper

left-hand corner.

I

Begin integration cycle I
/

(i) I

Compute t(Bn) 1

(2)

Compute space coordinates

of the center of gravity
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Compute space components

o5 velocity of the center I

of gravity j

(4) 'I
1

Compute body components

of angular velocity of
L

the body D
1

(5)

Compute Eulerian angles

t>

(6) _i_

Compute rates of Eulerian

angles

(7)
l

Compute kinetic energy

(8)

Compute direction cosines

(9)

Compute rates of direction

cosines

42
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(13) j_

Compute space coordinates of

jth foot using equations for

penetrating foot

I?_ t ...... i _

pu e space components of

velocity of jth foot using

quations for penetrating foot

(15)

For kth strut jth leg compute

strut length

C)

(10)
For kth strut jth leg compute

space coordinates of

hard point

(11) i

For ktb strut jth leg compute

space components of velocity

of hard point

(12)

Test: Was jth foot free or

penetrating at

t(n- 1) ?

Penetrating---_ Free------_

k = 1,2,3

k = 1,2,3,

G

(25)
1

Compute space coordinates of I
1

jth foot using equations for I
|

free foot J

(26) I

I Compute space components of
velocity of jth foot using

equations for free foot

(27)

For kth strut jth leg set

strut length equal to its

value at t(_n-l)

j = 1,2,3,4
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(16) ?

For kth strut jth leg compute

rate of change of

strut length

(17) i

For kth strut jth leg compute

stroke

(18) I

I For kth strut jth leg compute

reference length, quasi- static

shock force and rate-dependent

shock force

(19)

Compute space components of

force along kth strut jth

leg

V
(20)

k = 1,2,3

Compute body components of

force along kth strut jth

leg

(21)

Compute space components of total

force on the body through struts

of the jth leg

(22)

Compute body components of total

torque on the body through struts

. of the jth leg

(28) ?

For kth strut jth leg set

rate of change of strut

length equal to zero

(29)

For kth strut jth leg set

stroke equal to its value

at @- 1)

(30)

For kth strut jth leg set

reference length equal to

strut length

(31) ["

Set equal to zero the space

components of total force

on body through struts

of jth leg

Set equal to zero the body

components of total torque

on the body through struts

of jth leg

k=l

j = 1,2,3,4

2,3

j = 1,2,3,4



Q

(23)
r

Compute magnitude of quasi-static

normal force on jth foot
L

(33) ?

Set equal to zero quasi-static

normal force on jthfoot

(24)

Compute space components of

normal and tangential

forces on jth foot

through struts of

the jth leg

(34)

Set equal to zero space

components of normal and

tangential forces on jth

foot through struts of

the jth leg

(35) 1

Compute signed distance

of jth foot from jth

landing surface plane

j = 1,2,3,4

®

(36)

Compute velocity of jth

foot normal to jth

landing surface

plane

(37)

Test: Is jth foot penetrating

or free ?

Penetrating

Free
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•(38)

I Test:

?
Was jth foot penetrating

at t(n- 1) ?

__ Penetrating
(39)

i Compute body coordinates Iof jth foot

(41)

, Itotalforce on the body

through all legs

Free ........-_

I Set body coordinates of jth

foot equal to their values

at t(Bn- 1)

(42)

Compute space components 0f!

acceleration of the

center of gravity

(43)

Compute body components o 1
total torque on body

through all legs

(44) ___

Compute body components oI

angular acceleration of

the body

46
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BLOCK 1:

BLOCK 2:

BLOCK 3:

BLOCK 4.

BLOCK 5:

BLOCK 6:

t(Bn)= t(Bn-1)+ ZXtB

y(n) z(n) _{y(n-1) v(n-1) 7.(n-1)_ ^_ /v(n-1) re(n-l) v(n-1)/
' OB' OB-_'OB '--OB '_OB / +-_B\--OXB'--OYB'--OZB]

v(n) v(n) v(n) {re(n-l) ,(n-l) re(n-1)_ {_r(n-1) *r(n-1) _r(n-1)_
OXB' OYB' OZB = \'OXB'-OYB'-OZB] + AtB VOXB '-OYB'-OZB]

(n), (n) (n) (w(n-1) ,(n-l) ,(n-1)_ _*(n-1) *,(n-l) *,(n-l))W_B WT?B'W_B = \ _B "77B '_B ] + AtB\_B '_r/B '_B

qb(n),0(n),_(n) = (Jn-1),0(n-1),_(n-1))+ AtB($(n-1) ;(n-1),_(n-1) )

sin _(n)

sin O(n)

= cos _(n)

-COS 0(n)sin _(n)

cos _(n)

sin o(n)

-sin _(n)

-cos 0(n)cos _(n)
sin 0(n) sin 0(n)

0

(

BLOCK 7:

E(n) lItv(n)\2 f_r(n)_ 2 (V_)Z)21KB-- OXB) + VoYW + B

+_ _B + B_B w +B_B

BLOCK 8:

(n) ff(n)co s 0(n) 0(n)sin 0(n)si n if(n)
1,1 = cos - cos

(n) j/(n) sin o(n)
1,2 = sin
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BLOCK 8 - Concluded:

6 (n) = -COS t_(n)sin (b(n) - cos o(n)cos 6(n)sin _,(n)
1,3

BLOCK 9"

5(n)
2,1

(n)

2,2

(n)

2,3

(n)

3,1

(n)

3,2

(n)

3,3

= -sin _(n)cos 6 (n) - cos o(n)sin 6(n)cos _.(n)

= cos _(n)sin 0 (n)

= sin _(n)sin 6 (n) - cos o(n)cos 6(n)cos _(n)

= sin o(n)sin 6 (n)

= cos 0 (n)

= sin o(n)cos 6 (n)

_(n)
1,1

$(n)
1,2

_(n)
1,3

_(n)

2,1

=-[cos _(n)sin 6(n)+ cos o(n)cos 6(n)sin _(n_ ;(n)

r q)(n) sin t_(n_ _(n)+ isin 0 (n) sin
I-

F

- isin _9(n)cos 6 (n) + cos o(n)sin 6(n)cos t_ (n)_ t_ (n)

= +Isin g/(n)cos o(n)!_(n)+ Icos _/(n)sin _(n;'_(n)

= -[cos _(n)cos 6 (n) - cos o(n)sin 6(n)sin _(n) ;(n)

+ Isin o(n)cos qb(n)sin @(n)]_(n)

iZ+ Isin _(n)sin _b(n) - cos o(n)cos 6(n)cos I_'(n__(n)

= Fsin tp(n)sin 6(n)- cos 0(n)cos 6(n)cos _,'(n) l ;(n)
t_

+ L_n g')_in _(n)co_ _(n)-!_(n)

_[cos_(n)cos 6(n)_ cos o(n)sin 6(n)sin @(n)]_(n)
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BLOCK 9 - Concluded:

_(n)= Icos _(n)cos 0(n}t_(n)Isin _(n)sin 0(nl_(n )
2,2

_(n)= isin _(n)cos &(n) cos 0(n)sin Jn)cos _(n_ _(n)
2,3 +

r -I

i Jn)eo s _(n)_ $(n)+ isin 0(n)cos

+ icos _(n)sin _(n)+ cos Jn)cos _(n)sin _(nl_(n)

_(n)= Isin 6(n)cos _(n}l _(n)
3,1

53,2"(n)=-Isin0(nt_(n )

[-

_(n) - sin 0(n)sin_b(n)]_(n)
3,3 =

+ Icos 0(n)sin ¢5(n)I _(n)

+ Icos 0(n)cos _(n_ _(n)

BLOCK 10:

F

X (n)
HB, j,

(n)

HB,j,k

r

r _HB, j,k

WHB,j,k

_HB,j,k
_J

+

zX j
BLOCK 11:

"I-IB, j,k

<_ HB,j,k/

H ,J,kJ

-T f

_HB, j,k

_HB, j,k

_HB, j,k

+
lr(n) I

BLOCK 12: The foot was free if either H_n_.l) >0 or v(_n_l? > 0; otherwise, the foot
---_j

was penetrating.
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BLOCK 13"

FB, j'XFB,j'LFB,j

BLOCK 14:

_[(n) *(n) _(n) R _(n- 1)
FB, j'--FB,j' FB,j = "_NB,j-FNSB,j (Wx, j'Wy, j'Wz,j)

R (_(n- i)

+ -_NB, jkrFLNXB,j,

(,_ (n- 1)

+ RTB, j \r FLTXB,j'

BLOCK 15:

+ (

F(n- 1) _(n- 1)
FLNYB,j' rFLNZB,j)

F(n-i) _(n-l)

FLTYB,j' rFLTZB,j]

S(Bn)j,k [[..(n) . (n) \2 /.(n) .(n) \2

BLOCK 16:

+

BLOCK 17:

_(n) 1 [(.(n) x(n) _(_(n) _*(n) _

B,j,k- _(n) I\AHB,j,k- FB,j/\ HB,j,k- XFB,jJ

_B,j,k L

/ (n) y(n) h f_r(n) .*.(n)

+
z(n) z(n) _{'_(n) *_(n) '_-_

nB,j,k- FB,y\_'nB,j,k - _'FB,j]J

s(n) B,j,kSB, j,k = S(RB_,k - S (n)

1/2

BLOCK 18: The following table gives conditions and the operations to be performed when

all conditions in a row of the table hold. Test first to determine whether the first condi-

tion holds; all other conditions are mutually exclusive.
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Conditions

Contracted Contracting Elastic,

o(n) " ^ I _(n) , _ 0 ]0" S (n) - Other
oSB,j,k > u J t_,j,K SB,j,k SEB,j,k

Yes

Yes

Yes

Yes

Yes

No

Yes Yes

Yes Yes

Yes No

Yes No

No Yes

J
Do operation

o - s (n) - s (°)
B,j,k B,J,k

s(n) _ R(n- 1)

RB,j,k - -RB,j,k

F (n) _ IS(0) s(n)
SB.j.k - KSBk B.j,k- B.j.k]

FCR)B,j,k = 0

= R(n- I)
S(R},j,k _RB,j,k

¢°) __
RB,j,k -

SCCB,j,k

ISB,j,k] _ SCCB,j,k

I SB,j,k _ [CCB,j,k

_B.j.k[ " SCCB,j,k

SB,j,k < _CEB,j,k

-- FCCB,j, k

S (n) _ s(n-l)
RB,j,k - RB,j,k

F(n) ^

SB,j,k - u

F(n)

RB,j,k = FCCB,j,k

s(n) _(n- I)

RB,j,k = _RB,j,k

F (n)
SB,j,k = 0

F(n)
RB,j,k = - * FCCB,j,k

SCCB,j,k

s (n) _ s(nq)
RB,j,k - RB,j,k

F(n) _
SB,j,k - 0

F(n)

RB,j,k = FCCB,j,k

s(n) _(n- I)

RB,j,k = _RB,j,k

: F(SB),j, R B, 1,j,k + PB,2,j,k(SsB,j,k) + p (s(n) _2 p (S {,n),3'= p (n) B,3,j,k k' SB,j,kJ + B,4,j,k[' SB,j,kJ

F(n) ;(}_,_,k

RB,j,k = - _ FCEB,j,k

SCEB,j,k
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Contracted [ Contracting

S(n) > 0 s_(n) <o-
SB j k • B,j,k

Yes No

Yes No

Yes No

No Yes

L

NO Yes

No No

No No

Conditions

Elaslic

A.)
• _SB,j,k " SEBj,k

Ye_

No

N_

[
Other I

I

t s n) =
RB,j,k

!

SB,j, k :" SCEB,j, k ,],

s(n- 1)

RP,,j,k

Do operation

l'B,l,j,k -PP, 2,,,k(SsB,j,k)+ "B,3,j,k_bSB,j,k) + VB, 4 ),k_SB,j,k)

F(n)
RB,j,k = - FCEB, j,k

s(n) ,,
B,i,k + _E t3,],k

P ÷ ' _ S +

SB,j,k < SCEB j,k I

S(11)

_(n) Bj&
-RB i,k _ - *

SCEB.j,k

--- YCHLh k

SB, j,k SCEB.i,k

SI_}I,j, k ,(n) •= SB, hk + SEI3, j, ]

F(n)

RB,j,k = - FCEB,],k

_B,j,k I < _ECB,j,k

S(n) _(n- 1)
RB.j.R - _RB,,1,k

F(") : o
SB,j.k

(I;) ' B,j,k

FRB, j,k =- .

S [_:C B, i.]<

....... FECE,i, k

;Ec.,,,k

s(n) . _(n-1)
RB,i,k _R1t,j,k

F_'_,j,k = 0

Fl_3,j,k =F E('B,j,k

S_,j,k _(n-l)= _RB ,k

[SB,j,k t _EEB,j,k

F_nl_, j, k =0

_,(,,}
B,j,k

FRB,j,k =_ ,
SEEB, i k

S(II) .(II- 1)

Rg i k = _RB,j,k

(,,)
FRB,I,k = -FEEB k

--- Ft;EI3.i. k
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BLOCK 19:

u(n) u(n) u(n) - .!
X,j,k' Y,j,k' Z,j,k-_(n)

_B,j,k

F (n) = F (n) F(n)
HB, j,k SB,j,k + RB,j,k

F (n)
HXB,j,k,F (n) F (n)

HYB,j,k, HZB,j,k =

BLOCK 20-

_(n)

" H_B,j,k

iF_n)_
nUS,j,k

/_(n)

BLOCK 2l:

dn)
P,q

(IXH L) x(nJ. I /y(n) r_,j/ _ HB, j,k FB,j JJ
B,j,k- Ft%j/,k HB,j,k- y(n).],/zrn) _ zrn)

/u (n) ,v(.) u(n)
ddB),J,k_X,j,k Y,j,k' z,j,k;

HXB,j,k

F -(n) F (n) ._(n)
HXBT,j, HYB , =

T,j rHZBT,j

k=3

F(Hn)v_ . ,F (n) (n)
k=l ( _,-,,J,k HYB,j,k, FHzB,j,k)

BLOCK 22:

N(n) k=3
_BT, j =

(n)

k=l B}B HB,j, k Hr/B,j,kJ

k=3

-'/-'1 I(HB,j,kF_)B,j, k - __ F (n)
k=l B_?B HB,j,k H(B,j,kJ

k=3

k=l I:I_B _ HB,j,k HTIB,j,k - r]HB,j,kF(Hn_)B,j,k)

= ][W //x(n)×,j/i FB,j)+ & ._[Y(_)_ w . z(.)

N (n)
(BT,j =

BLOCK 23:
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BLOCK 23 - Concluded:

F (n) D (n) ( 'n).h2 + K [D(n)h3
FNSB,j =Kl_,l,] B,j +KB,2,j\D;B:]] B,3,j\ B,jJ

BLOCK 24:

F(n) _(n) F(n) _ (F(n) _(n) )FLXB,j'rFLYB, j ' FLZB, j = \ HXBT,j'rHYBT,j'F_0zBT,j

F(n)

FLNZB, j_

Np,q,j

- %(n)
rFLXB,j

_

FLTXB,j ]

F (n) [ =

FLTYB,j (

F {n) |

FLTEB,jJ

Tp,q,j

_(n) "_

[_ FLXB,j|

_F (n)

IF(n) /
FLZB,j.)

BLOCK 25:

_x(n) I

'FB, b

., (n)

XFB,

Z (n)
,.FB,

5(n)
P,q

B,j)

BLOCK 26:

_X(n)

FB,:

_[(n)
FB,

*_(n)

_FB,

(n)

P,q

r :(n_ 1) /

;FB,j I

n-l):

_TFB, j

(" (n) "_

Vox B '

• (n)
(.'_oz B__
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BLOCK 27:

BLOCK 28:

BLOCK 29:

BLOCK 30:

BLOCK 31:

BLOCK 32:

BLOCK 33."

BLOCK 34:

BLOCK 35:

BLOCK 36:

= _(n- 1)
S(I_)j,k -B,j,k

_(n)
B,j,k = 0

S (n) = s(SnB1.)k
SB,j,k ,],

s(n) = s(n)
RB,j,k B,j,k

F(n) _(n) ..(n)

HXBT,j,_HYBT,j,YHZBT,j = 0,0,0

N(n) . (n) .(n)

_BT,j'_/BT,j 'i__BT,j = 0,0,0

F (n)
FNSB,j = 0

F (n) F (n) F (n) = 0,0,0
FLNXB,j' FLNYB,j' FLNZB,j

F(n) F(n) F(n)
FLTXB,j' FLTYB,j' FLTZB, j =0,0,0

H (n) X (n) W y(n) W 2;(.n)
B,j = Wx, j FB, j + Y,j FB, j + Z,j FB,j + WB,j

v(n) = WX ' *(n) , z (n) + W _(n)NB,j jAFB,j + Wy, jXFB,j Z,j FB,j
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BLOCK 37:

penetrating.

BLOCK 38:

was penetrating.

BLOCK 39:

l

FB_

BLOCK 40:

The foot is free if either H (n) >
B,j=0 or

_,i 1)The foot was free if either H > 0

P,q

_ (n)_
X (n) _ XOB [FB, j

y(n) . (n),l
FB, j xOB

(n) .(n)
_ ZFB,]- LOB _

_(n) (n) _,(n) _(n-1)(n- 1) _,(n- 1)
FB, j,r/FB, j,qFB,j = ¢FB, j,rlFB, j,_FB,j

BLOCK 41:

j=4
_(n) _(n) _(n) _" [_(n) _(n) _(n)

_XB,_YB,_ZB = ff___HXBT,j'_HYBT,j'ttHZBT,j]
j=l

BLOCK 42:

_(n) *T(n) *(n) = l_(n) F(n) v(n) _ 1
OXB'vOYB'vOZB -XB' YB'-ZB

BLOCK 43:

j=4

N (n) N (n) N (n) = _" (N(n) . N (n) . XT(n)

_B' uB' _B j_/___ _BT,]' uBT,]'"_BT,j]

BLOCK 44."

* (n) w(n)w (n) [I - I_ _(n)W_B = 7/B _B[ )?_B _B) + "'_B

* (n) (n) (n) ,. N(n)
%B ---_B_B[_B - I_B) + _B

(n) x(n)w (n)[I - (n)

W_B = _B vB k _B Iu_B )+ r_B
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Initialization

Before entering the integrationcycle, itis firstnecessary to compute certain

constants and to compute initialvalues of those time-dependent variables whose initial

values are not given as input. As in the previous section,the computation will be

described by a block diagram followed by the detailsof the steps in each block. When

referring to equations written in the description of the integrationcycle itis always

assumed that the superscript (n) has the value zero.

Begin initialization

(11 I
Set t_ ) equal to zero

(2) I

Compute constants

B_B,BrlB,B_B in

torque equations

(3)

Compute initial kinetic

energy

(4)

Compute initial Eulerian

angles

(5)

Compute initial rates

of Eulerian angles

cI
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Compute initialrates

of directioncosines

(7)
Normalize coefficients of]

jth landing surface plane t

(8)
Compute coefficients fox"

resolving a vector into

components normal and

tangential to the jth

landing surface plane

(9) l
Compute initial space i

Lcomponents of the jth

foot I
J

(10)

Compute initial signed

distance of jth foot

from jth landing

surface plane

j=l ,2,3,4

(:)
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(11)

For kth strut jth leg

compute initial space

coordinates of hard

point

(12)

For kth strut jth leg

compute initial space

components of velocity

of hard point

(13) I

For kth strut jth leg

compute initial

length of strut

(14) 1

For kth strut jth leg

set initial stroke

equal to zero

(15) _ I

For kth strut jth leg

set reference length

equal to initial

length of strut
r

()

k=l 2,3 j = 1,2,3,4
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_(is)

Not to

____[_'I_ surface side(17)

Set equal to zero the

initial space

components of

velocity of the jth

foot

For kth strut jth leg compute

initial rate of change

of strut length

(19)

Compute initial forces and torques

on body through struts of jth leg

(20) l

Compute magnitude of quasi- static

normal force on jth foot

(21)

Compute space components of total

normal and tangential forces on

jth foot through struts of jth leg J

(16)

Test: Is jth foot to

surface side of jth

landing surface

plane ?

I To surface

side

(22)

Compute initial space components

of velocity of jth foot by free

foot equations

.A2 _ l

l For kth strut jth leg set equal tol zero the initial rate of change ofstrut length

k = 172,3

I I__(24) ................

Set equal to zero the initial

forces and torques on the

body through struts of

the jth leg

(25) ....

Set equal to zero the magnitude

of quasi-static normal force

on the jth foot

(26) I

Set equal to zero the space

components of total normal

and tangential forces on

jth foot through struts

of jth leg

.......... i_

6
6O

j = 1,2,3,4



(27)

l Computevelocity of ]th foot normalto jth landing surface plane

(28)
Compute initial space components

of acceleration of the

center of gravity

Q

j = 1,2,3,4

(29)

Compute initial body components of

angular acceleration of the body

End initialization

BLOCK 1:

t(B°) = 0

BLOCK 2:

B_B,B_B,B_B = M_L (I_,I77,I_)

BLOCK 3: Use block 7 of integration cycle.

BLOCK 4: Compute

I_h(0)I = arc cosine

(o)
53_3 (o.=_°_I=..)
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Set q_(0)= - ]d_(0)[

Compute

Compute

if 5(0)3,1<0; otherwise, set 6 (0) = ltjo) .

0(0) = arc cosine 5(30)2 0 < 0(0) < n)

_,(0 = arc cosine 0 --5_$(0 5-

\ 3,1] .

= I (o) ,rio).Set _(0) _ _(0) if 61, 2 < 0; otherwise, set t# (0) =

If 6 (0) = 0, then _b(0)t = arc cosine (1) = 0.
3,1

However, because of round-off

error, it is possible for a computer to generate a number slightly larger than unity for

o(01 5(o)
°3,3// 3,3 , and thus cause an error stop in most subroutines for computing the arc

cosine. This possibility should be accounted for in programing the computation of the

initial Eulerian angles.

BLOCK 5:

BLOCK 6:

BLOCK 7:

Use block 6 of the integration cycle.

Use block 9 of the integration cycle.

Compute WX, j,Wy, j,Wz, j by (a), (b), or (c).

AZ, j ¢ 0

AZ, j = 0

Conditions

Ay,j ¢ 0

AZ, j = 0 Ay,j = 0 AX,j ¢ 0

WX, j,Wy,j,Wz,j,WB, j =

WX,j,Wy,j,Wz,j,WB, j =

WX, j,Wy, j,Wz,j,WB, j -

Do operation

I z' l
,J Z,J L/

AZ,j_A2,j +A 2 A 2Y,j + Z,j

AY j fA2",j]'-X + A2 2• Y,J + AZ, j

-lAx, jl (Ax,j ,Ay,j ,Az,j ,-_L")

f 2 A 2 A 2AX,j AX,j + Y,j + Z,j
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BLOCK 8: Compute where

Compute

BLOCK 9:

BLOCK I0:

BLOCK II:

BLOCK 12:

where

= W 2
N1,1,j X,j

N1,2, j = S2,1, j = Wx, jWy, j

Sl,3, j = N3,1, j = Wx, jWz, j

= W 2
N2,2,j Y,j

N2,3, j = N3,2, j = Wy, jWz, j

= W 2
N3,3,j Z,j

= W 2 W 2
Wl,l,j Y,j + Z,j

T1,2,j = T2,1,j = -Wx, jWy, j

T1,3,j = T3,1,j = -Wx, jWz,j

= W 2 W 2
W2,2,j X,j + Z,j

T2,3, j = T3,2, j = -Wy, jWz, j

= W 2 W 2
T3,3,j X,j + Y,j

I" FB,jl

a(o)
P,q

Use block 35 of integration cycle.

Use block 10 of integration cycle.

Use block 11 of integration cycle.

-T

(,°LI
(o)

L: oB.
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BLOCK 13" Use block 15 of integration cycle.

BLOCK 14:

BLOCK 15"

sI+= B,j,k

BLOCK 16: If H(B0)j =>0, the foot is to the surface side of the plane; otherwise, the foot

is not to the surface side of the plane.

BLOCK 17:

BLOCK 18:

BLOCK 19:

calculation of reference length

=0,0,0
FB,j' FB,j' FB,j

Use block 16 of integration cycle.

Use blocks 18 to 22 of the integration cycle and delete from block 18 the

BLOCK 20:

BLOCK 21."

BLOCK 22:

BLOCK 23:

BLOCK 24:

BLOCK 25:

BLOCK 26:

BLOCK 27:

BLOCK 28:

BLOCK 29:

Use block 23 of integration cycle.

Use block 24 of integration cycle.

Use block 26 of integration cycle.

Use block 28 of integration cycle.

Use blocks 31 and 32 of integration cycle.

Use block 33 of integration cycle.

Use block 34 of integration cycle.

Use block 36 of integration cycle.

Use blocks 41 and 42 of integration cycle.

Use blocks 43 and 44 of integration cycle.

Comments on Output

Printing or plotting quantities generated by a digital computer can involve sub-

stantial computer time. Therefore, when the procedure described in this paper is pro-

gramed, outputting should be made flexible so that the number of output quantities can be

kept to a minimum consistent with the objectives of a particular investigation. It is

usually not necessary to output after each execution of the integration cycle since the

time step required for satisfactory integration is usually nmch smaller than that required
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for plotting. Conversionfrom dimensionless to dimensional output is readily programed
by using the inverse forms of the relations given in "Dimensionless Equations."

RELATION BETWEENPRESENTPAPER AND REFERENCE1

Reference1 gives the results obtainedby using the procedure to computelanding
stability boundaries, that is, to computeboundson approachvelocities andorientations
within which a vehicle will not overturn andbeyondwhich it will overturn. The calcula-
tions were madefor a 1/6-scale dynamic model of a lunar landingvehicle suitable for
mannedlanding. The computedstability boundarieswere comparedwith boundaries
obtainedby landing tests of the model.

The computedstability boundariespresented in reference 1 fall into three cate-
gories termed "elastic shocks,.... inelastic shocks," and"rigid body." The first two
categories were obtainedby using an IBM 7094digital computer programed to execute
a procedure in all essentials equivalent to the procedure of this paper. The boundaries
designated"rigid body" were obtainedby using a procedure reported in reference 5
which is basedon the assumption that the entire vehicle movesas a rigid unit. The dif-
ference betweenthe boundariesdesignated"elastic shocks" and "inelastic shocks" lies
in the representation of the shockabsorber. In the first instance, there is assumedto
be a spring in the shockabsorber; in the second,the shock is assumedto provide no
elastic restoring force.

For precise cross-referencing, the numerical values of input to describe the model
and the landing surface of reference 1 are given in table I on page66.

SOMENEEDEDIMPROVEMENTSIN ANALYSIS

It is extremely important to render analytical procedures much more efficient in
regard to consumptionof computer time in order to consider the multitude of landing
situations which may be encountered. Designof vehicles andplanning of missions would
be greatly enhancedif the time for calculating an impact history could be reducedto the
order of a hundredthof a minute as opposedto present times of 2 minutes or more with
fast computers. The possibilities for improvement in this area are largely unexplored.

A systematic methodis neededfor including the effects of overall elasticity of the
vehicle. A way shouldbe devisedso that the data describing the elastic characteristics
of the system canbe obtainedeither by structural analysis or by feasible tests if the
vehicle is available.
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TABLE I.- INPUT FOR LANDING STABILITY CALCULATIONS REPORTED IN REFERENCE 1

Fg = 32.2 ft/sec 2 (9.8146 m/see2); L = 2.26 ft (0.68885 m); At B = 0.000369 sec]
tZ

lb-sec 2
1.662

ft

2.08 ft-lb-sec 2

2.08 ft-lb-sec 2

1.098 ft-lb-sec 2

0.895 ft

-0.370 It

- 1.47 ft

1.4675 ft

0

-0.647 ft

0.895 ft

0.370 ft

- 1.47 ft

0.370 ft

0.895 ft

- 1.47 ft

0

1.4675 ft

-0.647 ft

-0.370 ft

0.895 ft

-1.47 ft

-0.895 ft

0.370 ft

- 1.47 ft

-1.4675 ft

0

-0.647 ft

-0.895 It

-0.370 ft

-1.47 ft

M . . • • • •

I77 ......

I_ ......

_H,I,I

_?H, I, 1

_H, 1,1

_H, 1,2

_/H,1,2

_H, 1,2

_H, 1,3

_?H, 1,3

_H, 1,3

_H,2,1

_/H,2,1

_H,2,1

_H,2,2

WH,2,2

_H,2,2

_H,2,3

YH,2,3

_H,2,3

_H,3,1

_H,3,1

_H,3,1

_H,3,2

T/H,3,2

_H,3,2

_H,3,3

77H,3,3

_H,3,3

(a) Input for configuration

2.473
rrl

0.2876 m-kg- see 2

0.2876 m-kg- sec 2

0.1518 m-kg- see 2

0.273 m

-0.113 m

-0.448 m

0.447 m

0

-0.197 m

0.273 m

0.113 m

-0.448 m

0.113 m

0.273 m

-0.448 m

0

0.447 m

-0.197 m

-O.ll3 m

0.273 m

-0.448 m

-0.273 m

0.113 m

-0.448 m

-0.447 m

0

-0.197 m

-0.273 m

-0.113 m

-0.448 m

_H,4,1 .........

H,4,1 .........

_H,4,1 .........

_H,4,2 .........

77H,4, 2 .........

_H,4,2 .........

_H,4,3 .........

_H,4,3 .........

_H,4,3 .........

..........
7(0) ..........
F,I

_(F0!I..........

_(F0)2..........

77(F0)2..........

_(o)

_(F0)3 ..........

77(F0!3 ..........

_(F0!3..........

_(F0!4..........

_(F0!4..........

-0.370 ft

-0.895 ft

-1.47 ft

0

-1.4675 ft

-0.647 ft

0.370 ft

-0.895 ft

- 1.47 ft

2.205 ft

0

-2.26 ft

0

2.205 ft

-2.26 ft

-2.205 ft

0

-2.26 ft

0

-2.205 ft

-2.260 ft

-0.113 m

-0.273 m

-0.448 m

0

-0.447 m

-0.197 m

0.113 m

-0.273 m

-0.448 m

0.672 m

0

-0.689 m

0

0.672 m

-0.689 m

-0.672 m

0

-0.689 m

0

-0.672 m

-0.689 m
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TABLE I.- INPUT FOR LANDING STABILITY CALCULATIONS REPORTED IN REFERENCE 1 - Concluded

AX, j ......

Ay, j ......

AZ, j ......

Aj ......

P_,j ......

RT, j ......

Ki, j ......

Co) Input for landing surface

0

0.17364818

0.98480775

0

10-11 ftfib-sec

I0-11 ft/lb- sec

0

0

0.17364818

0.98480775

0

0.672 × 10 -11 m/kg-sec

0.672 × 10 -11 n_kg-sec

0

For elastic shocks:

Pl,j,k ........ -.... O-

P2,j,1 ........ 53,600 Ib/ft

P2,j,2

P2,j,3 ........

P3,j,k

P4,j,k ........

SE,j,1 ........

SE,j, 2 ........

SE,j, 3 ........

FEC,i,k::::: j
FEE,j,k • .

FCC,j,I

FCC,j,2

FCC, j, 3 .......

FCE,j,k

SEC,j,k .......

SEE,j,k ......

SCC,J,k ......

SCE,j,k ......

KS .........

0

79,765 kg/m

73,900 lb/ft 109,975 kg/m

53,600 lb/ft 79,765 kg/m

0 0

0 0

0.00239 ft 0.000728 m

0.003465 ft 0.00106 m

0.00239 ft 0.000728 m

5 lb 2.27 kg

5 lb 2.27 kg

128 lb 58.1 kg

256 lb 116 kg

128 lb 58.1 kg

5 lb 2.27 kg

0.01 ft/sec 0.003048 m/sec

0.01 ft/sec 0.003048 m/sec

0.01 ft/sec 0.003048 m/sec

0.01 ft/sec 0.003048 m/sec

73,900 lb/ft 109,975 kg/m

(c) Input for shock absorber

For inelastic shocks:

Pi,j,k .......

SE,j,1 .......

SE,j,2

SE,j,3

FEC,j, k ......

FEE,j, k ......

FCC,j,1 ......

FCC, j,2 ......

FCC,j,3

FCE,j,k

SEC,j, k ......

SEE,j,k ......

SCC,j, k ......

SCE,j, k ......

KS" * " " • ° • • •

0

0.00203 ft

0.00350 ft

0.00203 ft

5 lb

5 lb

128 lb

256 lb

128 lb

5 lb

0.01 ft/sec

0.01 ft/sec

0.01 ft/sec

0.01 ft/sec

73,900 lb/ft

0.000619 m

0.00107 m

0.000619 m

2.27 kg

2.27 kg

58.1 kg

116 kg

58.1 kg

2.27 kg

).003048 m/sec

0.003048 m/sec

0.003048 m/sec

0.003048 t

m/sea

109,975kg/m
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For the usual vehicle configuration, a rocket nozzle protrudes downward beneath

the body when the vehicle is in a landing attitude. As the shock absorbers stroke, the

nozzle may impinge on the landing surface and affect the course of the vehicle during

the impact and possibly affect the stability against overturning. The subject of nozzle

impingement requires study and documentation.

CONCLUDING REMARKS

This paper has given the development of a procedure for computing the motions

during impact of a spacecraft with legs representative of presently conceived vehicles

for lunar landing.

Idealization of the vehicle and landing surface is discussed in a general way. The

vehicle is treated as an arbitrary rigid body to which there are attached up to four legs,

each leg consisting of three struts in an inverted tripod arrangement. The struts are

connected to the body by universal joints and the junction point of the three struts at the

foot of a leg is also a universal joint. There is a shock absorber in each strut. The

individual struts may shorten or lengthen because of stroking of the shock absorbers

but otherwise do not deform. Locations of the points where the struts attach to the body

and the initial positions of the feet relative to the body may be arbitrarily chosen. The

legs are considered to have no mass. The shock absorber in a strut is considered to

produce forces directed along the axis of the strut. The magnitudes of the shock

absorber forces are assumed to depend on the instantaneous length of the strut and the

rate of change of this length. The boundary of the landing surface is represented by a

set of arbitrarily oriented planes, one plane associated with each foot. If a foot is inter-

acting with the surface material, a force is assumed to act on the foot. This interaction

force is assumed to be a function of the position and velocity of the foot.

A derivation of the differential equations which govern the motion of the rigid body

part of the idealized vehicle is given. The equations consist basically of Newton's equa-

tions of translation of the body and the Euler equations for rotation of the body. Forces

and torques from the shock absorbers appear in the equations as specified variables.

Idealization of the shock absorbers is discussed in detail. Emphasis is placed

on practical considerations in representing the aluminum honeycomb shock absorbers

which were utilized on a model vehicle reported in NASA TN D-4215. These considera-

tions include representing constant force crushing characteristic of honeycomb, repre-

senting the overall vehicle elasticity by springs in the shock absorbers, and representing

gross system damping to prevent unrealistic bounding of the idealized system. Expres-

sions are derived relating shock absorber forces and torques to the system variables,

and thereby completing the equations of motion of the body.
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The idealization of the landing surface is developedandequationsof motion of the
feet are derived. In representing forces generatedby the interaction of the feet with the
surface, two facts must be considered. First, knowledgeof the properties of the lunar
surface which would affect landing performance is as yet limited. Second,soil mechanics
has not progressed to the point where onecanpredict with any confidencethe forces on
an arbitrary bodyimpinging uponor passing through soil evenunder laboratory condi-
tions. Therefore, caseswhere the feet move substantially through or along the surface
are studiedby assuming laws for the force on a foot. The definitions and associated
equationsallow one to construct a variety of laws for the force on a foot by specializa-
tion of constants. The derivation of the equationsof motion of the feet rests on the
assumptionsthat a foot not interacting with the landing surface material moves to main-
tain a static balancebetweenthe interaction force and the forces from the shock
absorbers bearing on the foot.

The equationsof motion of the body andfeet and necessaryauxiliary relations are
converted to equivalentdimensionless forms. Working with the dimensionless equa-
tions facilitates application of results to both model andfull-scale versions of a vehicle.
Also, replacing time by a dimensionless variable allows one to rely to someextent on
previous experiencein sizing the time step for numerical integration of the equations
of motion.

The schemefor numerical integration of the equationsof motion is given; the
methodused is a slight modification of Euler's method.

Explicit instructions are given for programing a digital computer to computea
general impact history.

Someimprovement is neededin the analysis of landingvehicles with legs. Ana-
lytical procedures shouldbe mademuch more efficient in regard to consumptionof
computer time, a systematic methodis neededfor including overall elasticity of the
vehicle, and the effects of impingementof the rocket nozzle on the landing surface
require study anddocumentation.

Langley ResearchCenter,
National Aeronautics and SpaceAdministration,

Langley Station, Hampton,Va., May 8, 1967,
124-08-04-13-23.
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